

 ARL-TR-7585 ● FEB 2016

 US Army Research Laboratory

Integrating the Nqueens Algorithm into a
Parameterized Benchmark Suite

by Jamie K Infantolino and Mikayla Malley

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7585 ● FEB 2016

 US Army Research Laboratory

Integrating the Nqueens Algorithm into a
Parameterized Benchmark Suite

by Jamie K Infantolino and Mikayla Malley
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

February 2016
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

May–August 2015
4. TITLE AND SUBTITLE

Integrating the Nqueens Algorithm into a Parameterized Benchmark Suite

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Jamie K Infantolino and Mikayla Malley
5d. PROJECT NUMBER

R.0006163.13
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-S
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7585

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

With heterogeneous computing increasingly a prevalent component in the science and engineering fields, benchmarking has
become even more important for evaluation of each new architecture. The main issue is having a benchmarking code that uses
sound benchmarking methodologies that accurately predict performance and provide a fair comparison between architectures.
This technical report describes methodologies that have been developed at the US Army Research Laboratory (ARL). It
examines the procedure on how to implement a new benchmark application program that will be added to the suite already in
development. Also discussed is the algorithm, its relevance to US Army applications, its implementation, and the results from
running it on the algorithm on the ARL Department of Defense Supercomputing Resource Center’s High Performance
Computers.

15. SUBJECT TERMS

optimization, benchmarking

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

28

19a. NAME OF RESPONSIBLE PERSON

Jamie K Infantolino
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-7121
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

List of Tables iv

Acknowledgments v

1. Introduction 1

2. Benchmark Suites 3

2.1 OpenDwarfs 4

2.2 SHOC 4

3. Related Works 4

4. Backtrack Branch and Bound 5

5. Autotuning Background 8

6. Method 10

7. Results 12

8. Conclusions 16

9. Future Work 16

10. References 17

List of Symbols, Abbreviations, and Acronyms 19

Distribution List 20

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. 1 Diagram of Nqueens algorithm ..7

Fig. 2 Autotuning diagram ...9

Fig. 3 Nqueens results on FOB using the MIC architecture13

Fig. 4 Nqueens results on FOB using the GPU architecture13

Fig. 5 Nqueens results on Excalibur using the GPU architecture15

List of Tables

Table 1 Dwarfs that have been implemented ..10

Table 2 Dwarfs that have not been implemented ..11

Table 3 Runtime in µs results from FOB using the MIC architecture14

Table 4 Runtime in µs results on FOB using the GPU architecture14

Table 5 Runtime in µs results on Excalibur using the GPU architecture15

Approved for public release; distribution is unlimited.
v

Acknowledgments

The authors wish to acknowledge the High-Performance Computing Modernization
Program (GS04T09DBC0017) for contributing support of this work.

Approved for public release; distribution is unlimited.
vi

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
1

1. Introduction

Supercomputing and High-Performance Computing (HPC) are vital assets in the
science and engineering fields. Problems are larger and more complex; therefore,
they require more computing resources with more compute capability. Problems
that a decade ago were considered infeasible can now be solved in a matter of hours.
Modern supercomputers are composed of multiple architectures—otherwise known
as heterogeneous computers—working together to solve a problem as quickly as
possible, provided the programmer has the skill to use all of the different
components correctly and efficiently.

This has opened a field of research to examine how to best use these
supercomputers. One major unknown is how the different computer architectures
are going to perform with different applications. One approach is to use a program
that will provide performance numbers for each available architecture to help
predict performance and determine the best computer for each application. These
are normally called benchmark programs, or just benchmarks.

Benchmark programs are defined as programs that are used to document
performance on a computer—or a set of computers—to compare performance
between them or to document performance of a particular application on a given
architecture. Creating a mechanism to accurately predict performance is extremely
difficult on a heterogeneous computer given the complexity of the different
architectures present and the necessary interface that must be maintained between
them.

Current and future trends in heterogeneous computers require that there must be a
way to predict performance on these machines. There is a need for ways to compare
machines to determine the best one to use for a given application. The goal of this
work is to develop a benchmarking method to predict performance on
heterogeneous computers through the use of optimal benchmark programs, while
only maintaining one code base to minimize the amount of time required to
maintain the benchmark programs. There are 2 benchmarking methods most
commonly used.

One of the main problems when benchmarking HPC machines is comparing
optimal performance across a variety of architectures. Usually this requires more
than one code base to ensure optimal programs are run on each architecture,
ensuring accurate and fair comparisons. Code optimized to run on one architecture
is not guaranteed to run optimally on another architecture. Another issue
benchmarking mechanisms face is how to choose programs that are reflective of
real world scenarios to ensure the performance numbers produced can be correlated

Approved for public release; distribution is unlimited.
2

to real world performance. It is important to choose benchmark programs
appropriately; they cannot be too big or too small, and they must be easy to
understand, easy to maintain, easy to execute, and reflective of what will be faced
within the applications.

The first method involves creating one program and running it on each machine to
produce performance numbers comparable across all machines. The most well-
known example of this is the Top 500 list, which uses one program—Linpack—to
rank the top supercomputers in the world. There are some advantages to this
approach. The first being it is easy to maintain because you are only having to
maintain one program instead of a collection of programs. Additionally, having one
program makes it easier to optimize for one architecture each time it is run. It is
also easier to run because you only have to worry about executing one program;
therefore, you do not have to be concerned about differences in setup. There are
also some disadvantages to this approach. Since only one algorithm is used, it is
only good for predicting performance for that algorithm. It really cannot be used to
make generalized statements about the architecture. Very rarely are complex
applications (i.e., those faced by the science and engineering fields) covered by one
simple benchmark program; therefore, benchmarking methods like this cannot be
used to make general statements about the architecture’s performance in real-world
applications. Another disadvantage is that having one algorithm makes it harder to
compare across architectures and determine the impact parameters have on the
architecture.

The second method is to use a suite of application programs to benchmark an
architecture. The most common approach for using a suite is based on the work
presented by the University of California, Berkeley.1 Within their report, the
concept of 13 computational dwarfs is presented where the 13 dwarfs represent the
most commonly faced problems in the science and engineering fields. By using a
collection of these dwarfs, one can adequately predict how the architecture will
perform with real world science and engineering applications. It also provides a
good way to compare performance across architectures. However, a downside to
this method is the effort it takes to maintain a suite. Normally the suite contains
numerous smaller programs for which an interface has to be designed and
maintained.

One problem both of these methods face is how to ensure comparisons between
architectures and machines are as accurate and fair as possible. Optimizations on
one architecture are not necessarily optimizations on other architectures. In fact,
sometimes they can have a negative impact on performance. This could potentially
lead to misleading results in benchmarking. If one is comparing results that have

Approved for public release; distribution is unlimited.
3

been optimized for one architecture yet run on an architecture where those
optimizations hurt performance, it will not give accurate comparison data.

A potential solution to this problem is to optimize each benchmark program to each
architecture. This will provide the fairest comparison data possible. However,
doing this manually is nearly impossible especially as the number of potential
architectures and benchmark programs increase. An automatic method to sweep
over all tunable parameters is preferred. This concept is called “autotuning”, where
the kernel parameters for each benchmark program are tuned without human
intervention for each available architecture. For this work, an exhaustive search
method will be used for the autotuning method to ensure that all parameter
combinations are explored.

A benchmark suite was previously started at the US Army Research Laboratory
(ARL) that implemented a handful of the dwarfs and used autotuning
methodologies to compare optimal performance of various architectures. The work
presented here builds upon this by adding the Backtrack Branch and Bound (BBB)
algorithm to that suite.

The next 2 sections provide more information about existing benchmark suites and
the available open-source suites. Sections 4–6 provide a detailed explanation of the
BBB benchmark program that was added in this effort, along with a description of
the method used to add this kernel to the suite. Results from running the particular
kernel on the ARL Department of Defense Supercomputing Resource Center’s
(DSRC’s) Supercomputers are presented in Section 7. Finally, conclusions and
future work are discussed in Section 8.

2. Benchmark Suites

Use of a benchmark suite to accurately predict performance has been used within
the research community for years. Researchers have taken this idea and created
their own open-source benchmark suites. It is in the best interest of this research
group to use these suites as a foundation. A complete discussion of the benchmark
suites can be found in a previously published ARL report.2 The takeaway from the
ARL technical report examining each benchmark suite is that there are 2 mature
benchmark suites to fit the needs of ARL: OpenDwarfs and the Scalable
Heterogeneous Computing Benchmark Suite (SHOC). Each of these has
advantages and disadvantages, as was previously documented.2 These 2 suites will
be summarized here for convenience.

Approved for public release; distribution is unlimited.
4

2.1 OpenDwarfs

The OpenDwarfs suite was created by Virginia Tech.3 The suite consists of 13 high-
level applications spanning a variety of domains covered by the computational
dwarfs presented in Berkeley’s report.1 Each dwarf implemented in the suite
represents a communication pattern or particular computation that is common to
important applications to the industry, which is the goal of using a benchmark suite
to predict performance. The particular dwarfs have been programmed and are
therefore not optimized for a particular architecture as much as possible. This
particular suite implements the computational dwarfs explicitly from the Berkeley
report.1

2.2 SHOC

SHOC was created by researchers at Oak Ridge National Laboratory and the
University of Tennessee4 with the purpose of testing the performance and stability
of computer architectures through the use of performance and stress testing.
Performance testing is used to measure system performance, while stress testing is
used to determine any hardware issues that may impact performance. The
benchmark suite itself is broken into 3 levels of tests. Level 0 stress tests the low-
level hardware characteristics such as bandwidth tests. Level 1 is the
implementation of the computational dwarfs. Level 2 is the real world applications.
This suite has a few optimization techniques it uses to produce the most accurate
timing results possible. First, it runs one kernel for a long time to increase the odds
of seeing transient effects from the architecture—which is important when trying
to predict real world runtimes. It also minimizes the data transfers so that pure
runtime is accurately measured. This suite also contains additional tests that are not
present in Berkeley’s report.1

3. Related Works

OpenDwarfs and SHOC are only 2 of many benchmarking suites available. There
is also Rodinia,5 Graph500,6 and Linpack.7 Each of these provides a slightly
different way to benchmark various architectures. The field of benchmarking is
constantly evolving and changing to meet the demands and specifications of new
architectures and applications. A good example of this is the High-Performance
Conjugate Gradient (HPCG)8 benchmark that was released in late 2013 to better
represent the modern day applications computers face. It is presented with the
Linpack benchmark in the Top 500 list. Even with this evolving nature of
preexisting benchmark suites, a portable solution that is designed to assess current
and emerging architectures is lacking.

Approved for public release; distribution is unlimited.
5

The goal of this work is to create a benchmark suite that is optimized for each
available architecture by using autotuning methodologies. Other researchers have
used OpenCL9 or CUDA to autotune code.10 The work presented in both papers
mainly focuses on Graphic Processing Units (GPUs) and autotuning kernels for one
architecture. Our work is broader given we are concerned with every available
architecture and true heterogeneous computing. The work from the papers supports
the case that autotuning is an important factor in improving performance; each
author saw an improvement in performance when compared to the untuned version
of the code. Other authors have compared results across multiple architectures11
without the use of autotuning.

Autotuning itself has been a topic of research in the industry. There are many
different methodologies that could be employed. In this work, we use an exhaustive
search method to ensure we get the optimal answer each time. Others have used
different search methods. Abu-Sufah and Karim12 used training data to classify
which type of matrix the given input is; they then set runtime parameters based on
that classification. They also changed the way the data was processed based on the
training data. In this work, we are using an empirical method to tune our kernel.
The kernel presented here is quite different than the one presented in their paper;12
therefore, we could not reuse their training data. Autotuning has also been used in
performance portable solutions.9,13,14 Phothilimthana et al.13 present a case for
autotuning but does not create a way to automatically achieve this in the way our
solution does. The work presented by Pennycook et al.14 shows how performance
can suffer when bad values are chosen for various parameters, which supports the
claim that autotuning is needed. However, they concentrate on a Message Passing
Interface (MPI)/OpenCL approach, whereas we are benchmarking using only
OpenCL.

4. Backtrack Branch and Bound

The BBB algorithm is a way to search for a solution to a problem among a variety
of potential solutions. This algorithm is used to solve various search and global
optimization problems for large spaces that are not easily managed. In a nutshell,
the BBB algorithm’s goal is to extend a partial solution into a complete solution.
The partial solution includes consistent values for some of the variables. The
simplest of problems use the BBB algorithm, but the computing time is lengthy.
There are distinct differences between the backtracking procedure and the branch
and bound procedure; the backtracking part is used to find all probable solutions
that are obtainable for the problem, it traverses tree by using the Depth First Search
method, realizes it made a mistake and redoes the last choice by backing up, and
the state space tree is searched until a solution is found.

Approved for public release; distribution is unlimited.
6

The branch and bound part solves optimization problems, it is able to traverse a tree
in any way—the Depth First Search or Best First Search—if a better optimal
solution is found, the presolution is let go, the state space tree is searched as a whole
to find the optimal solution, and lastly, it includes a bounding function.

According to researchers at the University of California at Berkeley, a technique is
required to figure out which parts of the search space are not needed because they
do not contain anything that is worth searching.1 Branch and bound algorithms use
the divide-and-conquer principle, which means that the space that is being searched
is divided into smaller subregions that are known as branching, and the bounds are
found on the solutions that are in the subregion.1 Two important aspects of the BBB
algorithm are the expansion and evaluation procedures. During the expansion
method, one of the internal nodes is taken from the search tree and is used to create
its children.15 During the evaluation process a lower bound is computed on the cost
of the solution.

Lastly, the lower bound will lead in directing whether a node should be expanded
or the order in which nodes are supposed to be expanded.15 The branch and bound
algorithm has 4 basic operations: branching, evaluation, bounding, and pruning.
During the BBB process a problem is selected, the problem is branched and split
into subproblems. Once the subproblems are created they are evaluated. If the
solution to the subproblem is infeasible, then it is pruned and the subproblem is
deleted. If the solution to the subproblem is not infeasible, then the bounds of that
solution are updated and the subproblem is added to the queue. Figure 1 shows a
general flow for the BBB algorithm.

Approved for public release; distribution is unlimited.
7

Fig. 1 Diagram of Nqueens algorithm

The good thing about backtracking is that it can repeat without difficulty through
all variations of a set; in doing this, it guarantees accuracy by listing all options.
For this to work, the search space must be pruned.16 Thrashing is a disadvantage of
the backtrack algorithm, which is a continuous failure for the same reason. If the
problem cannot be identified, searches in different parts of the spaces will continue
to fail.16 Intelligent backtrack is used to fix this problem. The variable that continues
to fail is returned immediately.

The 2 goals in the branch and bound search are to find an optimal solution and
prove the problem’s optimality. To reduce runtime, the only potential solutions that
should be searched are those thought to be a good or possible optimal solution.17
When only searching for the good, we will be able to prune the solutions that are
of no use.

The BBB method can be parallelized. If the search space is split up so that each of
the processors maintains their own subregion, the processors will be able to execute
independently. If the processors cannot be kept occupied with high-quality work, it
may be in the best interest to keep the tree small during the starting or ending point
because the latter works more efficiently when the tree is smaller in size due to the
parallel computation completing so much more work.18 In a regular branch and
bound search the active nodes may have to be thrown away because there is not

Approved for public release; distribution is unlimited.
8

enough space, which may contribute to the loss of an optimal solution. However,
when using a parallel system it is expected to have enough memory so that the
search can be completed.18 To make sure that the search methods’ parallel
implementation is effective, it is a good idea to ensure that the search tree is
consistently spread amongst all of the processors. If possible, all of the shared data
should be placed close to each other; doing this will cut back on the time that the
algorithm uses to travel and communicate.15 The only issue is the fact that the
search tree is only known during execution. Because of this, the algorithm has to
be able to manage any tree that is created during execution time while keeping
distribution and communication locality even.15

5. Autotuning Background

Producing meaningful benchmarking results across architectures is one of the
challenges faced when creating a benchmark suite for heterogeneous computers.
This is especially true when using a portable application program interface (API)
such as OpenCL, which was used for this work. There are 2 types of APIs that could
be used to write kernels: portable APIs (i.e., OpenCL) or vendor-specific APIs (i.e.,
CUDA). The vendor-specific APIs can be used to more precisely target the vendor-
specific architecture associated with that API leading to greater performance.
However, the same code cannot be used on different architectures from different
vendors. OpenCL can be used across all architectures but the performance will tend
to vary. OpenCL is portable but performance is not.

A significant aspect to benchmarking is code optimization, which ensures the
results are as accurate as possible. However, optimizations can be misleading and
lead to incorrect conclusions regarding the relative performance between
architectures, especially on heterogeneous computers with immature technology.
Heterogeneous computers have shown more sensitivity to source-level
optimizations and runtime parameters than traditional computers. In this situation,
the kernel can suffer from incorrect optimizations, resulting in unfair runtime
comparisons between architectures, especially when a portable API is used. Fair
runtime comparisons between architectures occur when the same level of
optimization is present for each architecture. For a benchmarking methodology to
use a portable API, optimization techniques must being integrated. The code can
be manually tuned for each architecture but this should be avoided since it is prone
to large differences in effort and uncertainty. Another way is to create a mechanism
to automatically tune the code where different parameter values are swept to
determine the best possible solution. In this work, source-level kernel
parameterization along with an autotuning software developed in-house that
sweeps over all possible combinations of kernel parameters was used to determine

Approved for public release; distribution is unlimited.
9

the optimal combination for each architecture so that the results for each
architecture are the most optimal.

Figure 2 shows a high-level diagram of how the autotuning software works. This
was created by researchers at ARL and used for this work. The core of the
methodology is the kernel generator code, which generates variations of the code
based on the combination of the input runtime parameters. A sample of this code
can be seen in the box above the “Kernel Generator Code” box in the figure. This
is a “C” preprocessing syntax code that takes in the input parameters seen in the
lowest box as input and produces the code on the left and right depending on the
input. In this particular case, the kernel generator code determines how many times
to unroll the loop in the input code. The first input of “4” will be given to the kernel
generator code and it will produce the results on the left, as demonstrated by the
purple-line path. The same process occurs with an input of “8”, as seen with the
dashed-blue lines, resulting in the code on the right.

Fig. 2 Autotuning diagram

Within this work, multiple kernel parameters were used for the autotuning.
Normally, the number of kernel parameters being swept is between 4 and 10. This
produces a huge number of individual kernels that will be tested to determine the
optimal kernel per architecture. As the proof-of-concept presented here, only 2 are
swept. This is to minimize the data and ensure that the program and autotuning
methods are working as intended.

Approved for public release; distribution is unlimited.
10

6. Method

Previous work done by the research group at ARL integrated 6 kernels from the
OpenDwarfs and SHOC benchmark suites into the in-house autotuning
heterogeneous benchmark suite. These kernels include a reduction algorithm, a
2-dimensional (2-D) stencil algorithm, a Sparse Matric-Vector Multiplication
(SPMV) algorithm, a Breath-First Search (BFS) algorithm, and a Fast Fourier
Transform (FFT) algorithm. Each of these algorithms covers a different application
area laid out by the University of California, Berkeley’s technical report1 on
computational dwarfs. For each of these algorithms, a parameterized kernel was
written and run through the autotuning code to obtain the optimal kernel for a
variety of architectures. The dwarfs that were already covered are listed in Table 1
along with the general application covered.

Table 1 Dwarfs that have been implemented

Dwarf Name Description Application area

Sparse linear algebra SPMV Matrix-vector multiplication
with sparse matrices.

Embedded computing,
general purpose
computing, machine
learning, graphics/games,
Intel RMS

Spectral methods FFT

Converts data from the time
domain to the frequency
domain to reduce the
complexity of a calculation.

Embedded computing,
machine learning,
graphics/games

N-Body methods N-Body . . . General purpose
computing

Structured grids Stencil2D Calculate a 9-point 2-D stencil.

Embedded computing,
general purpose
computing,
graphics/games

MapReduce Reduction Add a list of elements in an
array via the use of reduction.

General purpose
computing, machine
learning, databases

Graph traversal BFS Traverse a graph using a
breathe-first approach.

Embedded computing,
machine learning,
graphics/games,
databases, Intel RMS

For this work, the remaining dwarfs were examined to determine the best
application area to cover. To make this determination, various factors were
considered, the first being the application area a potential dwarf covered and how
it related to the others that were already covered. Ideally we wanted to pick one
very different from the others that were already implemented to expand the breadth
of coverage of the benchmark suite. The second consideration was whether the
dwarf would be representative of a known US Army application. One of the end

Approved for public release; distribution is unlimited.
11

goals of this suite is to help the US Army predict the performance of US Army-
relevant applications on the computers available.

The dwarfs that were not already covered are listed in Table 2 along with the
general applications covered, as determined in Berkeley’s report.1

Table 2 Dwarfs that have not been implemented

Dwarf Description Application area

Dense linear algebra Data is stored in dense
matrices or vectors.

Embedded computing,
general purpose computing,
machine learning, databases,
Intel RMS

Unstructured grids

Consists of an irregular grid
where data locations are
selected and the data must be
updated all together.

Machine learning, Intel RMS

Combinational logic
Logical functions are
implemented and state is
stored.

Embedded computing,
machine learning, databases

Dynamic programming

Calculates a solution by
breaking up the problem into
smaller, overlapping
problems.

Embedded computing,
general purpose computing,
machine learning, databases

Backtrack, Branch and Bound

Finds the optimal solution by
breaking the problem space
into smaller regions and
removing suboptimal
problems.

General purpose computing,
machine learning

Graphical models

Nodes represent random
variables and edges are
conditional dependencies
within a graph.

Embedded computing,
general purpose computing,
machine learning

Finite-state machines

Behavior is defined by states,
transitions are defined by the
input, and current state and
events are represented by the
system.

Embedded computing,
general purpose computing,
graphics/games

After examining these 2 tables, it was clear that all of the application areas were at
least covered by a kernel already present in the benchmark suite. Therefore, the
various applications areas themselves were examined to determine if there was an
area that particularly matched up to a US Army-relevant application; this leads to
machine learning as the application area chosen to explore. The Berkeley report1
highlights 2 kernels that were added specifically to support machine learning:
dynamic programming and BBB. The latter was chosen as the dwarf to concentrate
on for this work. Either could have been chosen but the BBB provided a better
opportunity to link performance to machine learning.

Approved for public release; distribution is unlimited.
12

The first step was to examine what the other benchmark suites did for the BBB
algorithm. OpenDwarfs implemented an Nqueens algorithm, which seemed to be a
very well-known and respected BBB algorithm. It was chosen as our baseline
algorithm as well. Then, a literature search was performed to determine if
optimizations others made could be reused.

An Nqueens test bench program with autotuning methodologies was then
developed. This included implementing an Nqueens kernel within OpenCL and
creating a driver program to test the kernel. The results were documented as a
baseline for the next stages of integration. Testing was also done at this time. It is
important for the results to be accurate so that the timing results are valid.

The test bench program with 2 autotuning parameters was implemented, the first
being the problem size, which was the size of the board, and second, the number of
threads, which is the number of threads that were all run at once. The results were
gathered on Excalibur and FOB to show how performance varied with the
parameters.

7. Results

The Nqueens kernel was run on 2 heterogeneous machines at the ARL DSRC: FOB
and Excalibur. The FOB is a 64-node heterogeneous cluster consisting of 16-IBM
dx360M4 nodes, each with one NVIDIA Kepler K20M GPUs and 48-IBM
dx360M4 nodes, and each with one Intel Phi 5110P. Each node contains a dual-
Intel Xeon E5-2670 Central Processing Units (CPUs), 64-GB of memory and a
Mellanox FDR-10 InfiniBand host-channel adapter. Excalibur has 3,13-Intel Xeon
E5-2698 compute nodes with 128-GB of memory and an InfiniBand interconnect;
32 of these nodes have 256-GB of memory and an NVIDIA Tesla K40 GPU. More
details on Excalibur can be found on the US Army DSRC website.19

Figures 3 and 4 show the results of FOB for the Many Integrated Core (MIC)
processor and the GPU, while Tables 3 and 4 show the runtimes. It can be seen that
overall the results on the GPU are slower than on the MIC; however, both have the
same best performing kernel for the largest board. This kernel occurs when the
number of threads executing at once is 16. It can also be seen that the lines on the
graph begin showing more variation more quickly on the GPU than on the MIC.
This can be interpreted as the GPU being more sensitive to the number of threads
sooner than the MIC.

Approved for public release; distribution is unlimited.
13

Fig. 3 Nqueens results on FOB using the MIC architecture

Fig. 4 Nqueens results on FOB using the GPU architecture

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14

Ru
nt

im
e

(u
se

c)

Size of Board

FOB Results - MIC

1

2

4

8

16

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

Ru
nt

im
e

(u
se

c)

Size of Board

FOB Results - GPU

1

2

4

8

16

Approved for public release; distribution is unlimited.
14

Table 3 Runtime in µs results from FOB using the MIC architecture

Size of
board

N threads
1 2 4 8 16

4 0.00922333 0.010555 0.1284 0.00778667 0.00715833
5 0.020015 0.017565 0.01851 0.0150917 0.00976667
6 0.031845 0.03124 0.0186283 0.0221533 0.022465
7 0.06589 0.05767 0.04447 0.0441065 0.0218433
8 0.121363 0.111075 0.088975 0.0516883 0.0352317
9 0.169782 0.146932 0.129743 0.120732 0.05366

10 0.175228 0.176315 0.175922 0.206492 0.0574817
11 0.343343 0.32064 0.346177 0.310695 0.147945
12 1.63164 1.35784 1.42274 1.44006 0.686292
13 5.62035 6.21 6.38215 6.27627 3.48108

Table 4 Runtime in µs results on FOB using the GPU architecture

Size of
board

N threads
1 2 4 8 16

4 0.00096167 0.00107833 0.00099167 0.00094833 0.00124
5 0.00142333 0.00144667 0.00161167 0.00170667 0.001785
6 0.002135 0.00235 0.00256 0.00255833 0.00266667
7 0.00297167 0.00351333 0.00395167 0.00399667 0.00429
8 0.00719833 0.00606333 0.00537 0.00588 0.0062
9 0.02837 0.01898 0.0137283 0.0109267 0.00946

10 0.146675 0.08932 0.0551933 0.0361517 0.027215
11 0.885253 0.52041 0.287963 0.185977 0.123232
12 4.86937 2.90203 1.84538 1.07812 0.746093
13 9.81857 9.83973 9.57822 6.161961 4.32638

The results from Excalibur are seen in Table 5 and Fig. 5. The figure has the same
pattern as the figures from FOB. However, there are slight variations. When
compared to the GPU results from FOB, the GPU on Excalibur has the same best
kernel (i.e., N threads = 16), but there is more separation of the lines at the higher
workloads. In addition, the worst performing workload performs far worse on this
GPU than on the GPU from FOB.

Approved for public release; distribution is unlimited.
15

Table 5 Runtime in µs results on Excalibur using the GPU architecture

Size of board N threads
1 2 4 8 16

4 0.00171 0.00171 0.00175 0.00241 0.00172
5 0.00225 0.00248 0.00248 0.00257 0.00272
6 0.00301 0.00326 0.00333 0.00371 0.00469
7 0.00425 0.00458 0.00476 0.00514 0.00544
8 0.00906 0.00729 0.00674 0.00726 0.00771
9 0.03004 0.02128 0.01599 0.0128 0.01142

10 0.15133 0.09297 0.0593 0.03973 0.03022
11 0.91115 0.53566 0.31445 0.19191 0.12672
12 6.02307 3.48799 1.4461 1.16836 0.75468
13 10.3828 17.6849 6.92684 7.0915 4.58497

Fig. 5 Nqueens results on Excalibur using the GPU architecture

These results show the importance of autotuning due to the variation of
performance one can see through the graphs. In all cases, 16 seems to perform the
best, but if that is not feasible for the problem space, one would see a huge variation
in results. In addition, this provides a valid way to compare the architectures. We
can now compare the best performing kernels at each size with confidence that we
are running an optimal kernel for each. This data can now be used to predict
performance on each architecture with the highest degree of accuracy. This data
also shows how the different numbers of threads impact performance.

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14

Ru
nt

im
e

(u
se

c)

Size of Board

Excalibur Results - GPU

1

2

4

8

16

Approved for public release; distribution is unlimited.
16

8. Conclusions

The work presented here details the steps taken to add a new kernel to the autotuned
heterogeneous benchmark suite developed by ARL. The algorithm integrated
within this work expands the breadth of areas covered by this suite.

The results show the impact of autotuning and how it can be used to better predict
performance of applications on different architectures. The autotuning allows for
the most optimal runtimes to be produced, thus enabling consistent comparison
among architectures.

9. Future Work

Future work includes integrating the test bench program into the heterogeneous
benchmark suite at ARL. This means creating child classes for Nqueens’ specific
parameters to follow the coding design that has already been established. To
provide a better picture of performance on the different architectures more
parameters should be added. One of the proposed parameters includes a parameter
to force each thread to do more work. Right now, each of the threads updates one
position. The parameter would expand this so that threads would update more
positions. A maximum number of position updates would have to be determined.
This will ensure that the threads have enough work to do, which will help better
predict performance.

Other parameters could include changing the workgroup size to vary how much
work each work group does and vectorizing the code to use local memory. Each of
these will help exercise various elements of the architecture to really help guide
programmers as to what is best for each architecture while providing valuable
insight into how the architecture works.

Other work outside of this kernel includes adding more parameterized kernels to
the benchmark suite. The steps outlined on how the Nqueens algorithm was added
will be followed for each new kernel. The more kernels that are added, the more
coverage the benchmark suite provides.

Approved for public release; distribution is unlimited.
17

10. References

1. Asanovic K, Bodik R, Catanzaro BC, Gebis J, Husbands P, Keutzer K,
Patterson D, Plishker W, Shalf J, Williams S. The landscape of parallel
computing research: a view from Berkeley. Berkeley (CA): EECS Department,
University of California, Berkeley; 2006.

2. Infantolino J, Park S, Shires D. Selecting a benchmark suite to profile high-
performance computing (HPC) machines. Aberdeen Proving Ground (MD):
Army Research Laboratory (US); 2014 Nov. Report No.: ARL-TR-7141.

3. Feng W, Lin H, Scogland T, Zhang J, OpenCL and the 13 dwarfs: a work in
progress. Proceedings of the Third Joint WOSP/SIPEW International
Conference on Performance Engineering; 2012. p. 291–294.

4. Danalis A, Marin G, McCurdy C, Meredith JS, Roth PC, Spafford K, Tipparaju
V, Vetter JS. The scalable heterogeneous computing (SHOC) benchmark suite.
In: Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units; 2010.

5. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee S-H, Skadron K.
Rodinia: A benchmark suite for heterogeneous computing. In: IEEE
International Symposium on Workload Characterization; 2009.

6. Murphy RC, Wheeler KB, Barrett BW, Ang JA. Introducing the graph 500.
Cray User Group, Inc.; 2010.

7. Dongarra J, Luszczek P. Linpack benchmark. Encyclopedia of Parallel
Computing. Springer; 2011. p. 1033–1036.

8. Dongarra J, Heroux MA. Toward a new metric for ranking high performance
computing systems. Sandia National Laboratory (NM);2013. 2013–4744.

9. Du P, Weber R, Luszczek P, Tomov S, Peterson G, Dongarra J. From CUDA
to OpenCL: towards a performance-portable solution for multi-. Parallel
Computing. 2012;38(8):391–407.

10. Fang J, Varbanescu AL, Sips H. A comprehensive performance comparison of
CUDA and OpenCL. In: 2011 International Conference on Parallel
Processing; 2011.

Approved for public release; distribution is unlimited.
18

11. McIntosh-Smith S, Boulton M, Curran D, Price J. On the performance
portability of structured grid codes on many-core computer architectures. The
International Conference for High Performance Computing, Networking,
Storage, and Analysis; 2014.

12. Abu-Sufah W, Karim AA. Auto-tuning of sparse matrix-vector multiplication
on graphics processors. The International Conference for High Performance
Computing, Networking, Storage, and Analysis; 2013.

13. Phothilimthana PM, Ansel J, Ragan-Kelley J, Amarasinghe S. Portable
performance on heterogeneous architectures. In: ACM SIGPLAN Notices.
March 2013;48(4):431–444.

14. Pennycook S, Hammond SD, Wright SA, Herdman J, Miller I, Jarvis SA. An
investigation of the performance portability of openCL. Journal of Parallel and
Distributed Computing. 2013;73(11):1439–1450.

15. Kaklamanis C, Persiano G. Branch-and-bound and backtrack search on mesh-
connected arrays of processors. Mathematical Systems Theory. 1994;27:471–
489.

16. Su B-Y, Catanzaro B, Sundaram N. Backtrack and branch-and-bound
[accessed 2015 Sep 9].
http://view.eecs.berkeley.edu/wiki /Backtrack_and_Branch-and-Bound.

17. He H, Daume III H, Eisner JM. Learning to search in branch and bound
algorithms. In: Advances in Neural Information Processing Systems (NIPS).
2014: 3293–3301.

18. Bader DA, Hart WE, Phillips CA. Parallel algorithm design for branch and
bound. In Tutorials on Emerging Methodologies and Applications in
Operations Research. Springer New York. 2005:5-1.

19. US Army Research Laboratory (ARL) Dedicated Short-Range
Communications (DSRC); 2016. [accessed 2016 Jan 20].
http://www.arl.hpc.mil.

Approved for public release; distribution is unlimited.
19

List of Symbols, Abbreviations, and Acronyms

2-D 2-dimensional

API application program interface

ARL US Army Research Laboratory

BFS Breath-First Search

BBB Backtrack Branch and Bound

CPU Central Processing Unit

DSRC Department of Defense Supercomputing Resource Center

FFT Fast Fourier Transform

GPU Graphic Processing Units

HPC High-Performance Computing

HPCG High-Performance Conjugate Gradient

MIC Many Integrated Core

MPI Message Passing Interface

SHOC Scalable Heterogeneous Computing Benchmark Suite

SPMV Sparse Matric-Vector Multiplication

Approved for public release; distribution is unlimited.
20

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 DIRUSARL
 (PDF) RDRL CIH S
 J INFANTOLINO

	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. Benchmark Suites
	2.1 OpenDwarfs
	2.2 SHOC

	3. Related Works
	4. Backtrack Branch and Bound
	5. Autotuning Background
	6. Method
	7. Results
	8. Conclusions
	9. Future Work
	10. References
	List of Symbols, Abbreviations, and Acronyms

